Reactivity of the carbonyl group in water. Generation of azomethine ylides from aqueous formaldehyde: Michael addition versus dipolar trapping

André Lubineau,* Giliane Bouchain and Yves Queneau*• \dagger
Laboratoire de Chimie Organique Multifonctionnelle (CNRS URA n ${ }^{\circ} 462$), Institut de Chimie Moléculaire d'Orsay, Université Paris-Sud, Bât. 420, 91405 Orsay cedex, France

The ability of aqueous formaldehyde to generate azomethine ylides has been studied. Treatment of methyl N-methylglycinate with dipolarophiles in commercial aqueous formaldehyde gives pyrrolidines by azomethine ylide cycloaddition which competes with a Michael addition.

Introduction

Following our studies on the use of water as a solvent for organic reactions, ${ }^{1}$ we recently described results for the reactivity, in water, of the carbonyl group. ${ }^{2}$ It has been shown that the carbonyl double bond could serve as a heterodienophile despite its quasi total hydration in water, thus allowing the use of α-activated aldehydes that are commercially available in aqueous solution. In keeping with this idea, we report herein the results of our study of the ability of aqueous formaldehyde to generate azomethine ylides by reaction with amino acid derivatives.

Iminium salts produced from amines or amino acids in aqueous formaldehyde are able to react as heterodienophiles when treated with cyclopentadiene or other dienes. ${ }^{3}$ On the other hand, the generation and the trapping of azomethine ylides from amino acids derivatives is well precedented. ${ }^{4}$ Examples can be divided into two groups: the ylide can be generated via a decarboxylation process (as in the case of amino acids) ${ }^{5}$ or via a deprotonation step (as in the case of amino esters). ${ }^{6}$ Very often, the cycloadditions are conducted in refluxing toluene in order to remove the water produced during the iminium formation azeotropically, although it has been noted that this removal of water is not essential. ${ }^{7}$ Solvent polarity was suspected to promote rate enhancements ${ }^{8}$ in such cycloadditions that were shown to proceed readily in dimethylformamide, dimethyl sulfoxide, acetonitrile or methanol, ${ }^{9}$ and even in acetic acid. ${ }^{6 b .10}$ In a few cases, aqueous media were used, ${ }^{11}$ but never in the case of formaldehyde. All these facts led us to investigate whether a commercial aqueous formaldehyde could be used directly as a source of ylides.

Results and discussion

We started with the reaction of sarcosine $\mathbf{1}$ (N-methylglycine) with an efficient dipolarophile, N-ethylmaleimide 2 (NEM), either with paraformaldehyde in refluxing toluene with azeotropic removal of water, or with aqueous formaldehyde. In toluene, the pyrrolidine 3 was produced (61%) resulting from the trapping of the unstabilized ylide obtained after decarboxylation of the iminium salt, while in water, only the succinimide 4 was observed (48%) as a result of the Michael addition of the amino acid onto the electronically deficient double bond of the maleimide (Scheme 1). This (1,4) addition process ${ }^{12}$ is especially favourable in water or in methanol as

[^0]Table 1 Formation of the succinimide $4\left(1 \mathrm{~d}, 40^{\circ} \mathrm{C}\right)$ from sarcosine 1 and NEM 2

	Solvent
Water	62
MeOH	64
DMF	21
THF	traces
Toluene	$0\left(6 \%\right.$ at $\left.110^{\circ} \mathrm{C}\right)$

Scheme 1
depicted in Table 1. It is even faster in these solvents than in dimethylformamide, which is known to improve the possibility of nucleophilic attack. We have already demonstrated that water (or methanol) may be used as a solvent for Michael additions by the addition of nitroalkanes to α, β-unsaturated carbonyl compounds. ${ }^{13}$ Nevertheless, this easy reaction is here an undesired pathway competing with the dipolar process. Furthermore, it is likely that the unstabilized ylide produced after decarboxylation of the iminium salt would be easily protonated in water, thus also preventing the cycloaddition.

For these reasons, another carbonyl compound, phenylglyoxal 5 was used, in order to generate stabilized ylides due to the presence of the phenylcarbonyl group. In Table 2 the outcome of this reaction in various solvents is reported. Again in pure water (entry 3), the reaction of sarcosine with phenylglyoxal and N-ethylmaleimide resulted in the unique formation of succinimide 4. But in a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of water and THF at $40^{\circ} \mathrm{C}$ (entry 4), adducts 6 and 7 (endo and exo) were obtained in acceptable yields. This confirms that the presence of water does

Table 2 Yields (\%) for the reaction of phenylglyoxal with sarcosine and NEM 2

				endo	exo	Michael $\mathbf{4}$	Conditions
Entry	Solvent	$\mathbf{6}$	$\mathbf{7}$	oxazoline			
$\mathbf{4}$	Toluene	Dean-Stark, 6 h	51	19	-	-	
$\mathbf{8}$							

Table 3 Yields (\%) for the reaction of formaldehyde with methyl sarcosinate and NEM

Entry	Conditions ${ }^{\text {a }}$	10	11	12	13
1	A, toluene, $2 \mathrm{~h}, 110^{\circ} \mathrm{C}$	48	51	--	-
2	A, water, $2 \mathrm{~h}, 40^{\circ} \mathrm{C}$	18	15	32	3
3	A, 1:3 water-THF, $24 \mathrm{~h}, 40^{\circ} \mathrm{C}$	31	53	-	6
4	A, $1: 3$ water- $\mathrm{MeOH}, 21 \mathrm{~h}, 40^{\circ} \mathrm{C}$	25	32	12	3
5	A, $1: 3$ water-DMF, $6 \mathrm{~h}, 40^{\circ} \mathrm{C}$	34	38	-	-
6	B, water, $2 \mathrm{~h}, 40^{\circ} \mathrm{C}$	14	16	30	2
7	B, 2: 1 water-THF, $6 \mathrm{~h}, 40^{\circ} \mathrm{C}$	27	37	25	-
8	B, 1:3 water-THF, $8 \mathrm{~h}, 40^{\circ} \mathrm{C}$	36	54	-	3
9	C, $1: 3$ water-THF, $5 \mathrm{~d}, 40^{\circ} \mathrm{C}$	26	47	9	4
10	C, 1:3 water-THF, $6 \mathrm{~h}, 80^{\circ} \mathrm{C}$	36	55	-	-

${ }^{4}$ Reactions conducted in closed vessel in solvent $\left(4 \mathrm{~cm}^{3}\right)$ with equimolar amounts of NEt_{3} and 9 . Method $\mathrm{A}: \mathrm{H}_{2} \mathrm{CO}$ (13.4 mmol), 9 (2 equiv.) NEM, $2(1 \mathrm{mmol})$. Method B : as for A with $\mathrm{Yb}(\mathrm{OTf})_{3}(0.2 \mathrm{mmol})$. Method $\mathrm{C}: \mathrm{H}_{2} \mathrm{CO}(4 \mathrm{mmol}), 9(4 \mathrm{mmol})$ and $2(1 \mathrm{mmol})$.

not prevent the dipolar cycloaddition, but still directs the reaction to the favoured Michael pathway. The pyrrolidines 6 and 7 were also obtained in methanol (entry 5).

In refluxing toluene (entry 1), good yields were obtained. However, when the reaction was performed at $40^{\circ} \mathrm{C}$ (entry 2), adducts 6 and 7 were obtained together with oxazolidine 8 resulting from the cycloaddition of the decarboxylated ylide with a second molecule of phenylglyoxal. ${ }^{5 b .14}$ At $40^{\circ} \mathrm{C}$, this oxazolidine cannot undergo a retro $(3+2)$ dipolar process and was thus isolated with the two other adducts, while in waterTHF or in methanol, the retrocycloaddition occurred readily at $40^{\circ} \mathrm{C} .{ }^{15}$ This explains why, for reaction conducted at $110^{\circ} \mathrm{C}$, only pyrrolidines 6 and 7 were obtained. Since the stabilized ylides such as those described above tolerate water, we tried the commercial solution of formaldehyde in water again, but this time using an amino acid derivative that would not lead to a decarboxylated ylide. Thus, reaction of the sarcosine methyl ester 9 (as its hydrochloride) with N-ethylmaleimide and formaldehyde was studied in various solvents (Table 3). As usual, the cycloaddition occurred in refluxing toluene (entry 1). But in this case, pure water as solvent (entries 2 and 6) could also be used for the dipolar cycloaddition, providing adducts $\mathbf{1 0}$ and 11 (endo and exo) along with the succinimide 12 coming from the Michael addition and the oxazolidine $13 . \ddagger$ This

[^1]reaction proceeded at $40^{\circ} \mathrm{C}$ directly using commercial aqueous formaldehyde. The concurrent Michael reaction was inhibited by adding THF to the reaction mixture. Thus, in $1: 3$ (v / v) water-THF (entries 3, 8, 10), only the desired dipolar cycloaddition was observed. In the same solvent mixture, addition of ytterbium triflate ${ }^{16}$ in a catalytic amount (entries 7 and 8) was shown to slightly increase the rate of the reaction, though in pure water, no effect was detected.

Using diethyl fumarate 14 as the dipolarophile led to the same observations regarding the effect of the solvent on the formation of adducts 15 and $16, \S$ although smaller amounts of Michael addition product 17 were obtained (Table 4). When diethyl maleate 18 served as the dipolarophile in water (entries 2 and 6), the major adducts were also the 3,4-trans pyrrolidines 15 and 16. The presence of fumarate in the excess of reactants left

after the reaction implied that a Michael-retro-Michael process gave rise to diethyl fumarate which reacted preferentially. Indeed, it was verified that no retro dipolar cycloaddition took place under these conditions. When the rate of the Michael
§ Structural assignments in new compounds throughout the paper were based on comparisons with those reported for very similar molecules. ${ }^{17}$

Table 4 Yields (\%) for the reaction of formaldehyde with methyl sarcosinate and diethyl fumarate and maleate

Entry	Conditions a	$\mathbf{1 5}+\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 9}$
1	A, 14, water	50	-	-
2	A, 18, water	24	5	2
3	A, 14, $1: 3$ water-THF	89	-	-
4	A, 18, $: 3$ water-THF	28	-	16
5	B, 14, water	53	Traces	-
6	B, 18, water	75	10	-
7	B, 14, $1: 3$ water-THF	64	Traces	-
8	B, 18, $1: 3$ water-THF	91	3	-

${ }^{a}$ Reactions conducted at $80^{\circ} \mathrm{C}$ in closed vessel in solvent $\left(4 \mathrm{~cm}^{3}\right)$ with NEt_{3} (1 equiv.), 9 (1 equiv.) and stopped after 13 h . Method $\mathrm{A}: \mathrm{H}_{2} \mathrm{CO}$ (4 $\mathrm{mmol}), 9(4 \mathrm{mmol})$ and dipolarophile (1 mmol). Method B: $\mathrm{H}_{2} \mathrm{CO}$ (1 $\mathrm{mmol}), 9(4 \mathrm{mmol})$ and dipolarophile (4 mmol$).{ }^{b}$ Small amounts of oxazolidine 13 were also obtained.

addition was decreased by adding THF (entry 4), then small amounts of 3,4-cis adducts 19 were formed.

In conclusion, although competing with a Michael addition that is accelerated in aqueous media (confirmed here in the case of nitrogen nucleophiles), direct use of a commercially available aqueous formaldehyde as a source of stabilized azomethine ylides, allows the preparation of pyrrolidines in good yield from methyl sarcosinate. Concurrent Michael addition could be prevented by adding THF to the reaction mixture.

Experimental

NMR spectra were recorded on Brüker AM 250, AM 400, AC 200 and AC 250 spectrometers. δ Values are given relative to internal tetramethylsilane; multiplicity is indicated as follows: s for singlet, d for doublet, t for triplet, q for quadruplet, m for multiplet and br for broad; J values are given in Hz . IR spectra were recorded using a Brüker FT instrument. Flash chromatography was performed using $6-35 \mu \mathrm{~m}$ silica gel (60) purchased from the S. D. S. company. TLC was performed using Merck $60 \mathrm{~F}_{254}$ plates, and visualized first with UV light and second by heating after alcoholic sulfuric or phosphomolybdic acid treatment. Elementary analyses were performed at the Service Central de Microanalyse du C.N.R.S.

3-Ethyl-7-methyl-cis-3,7-diazabicyclo[3.3.0]octane-2,4-dione 3

 Sarcosine ($534 \mathrm{mg}, 6 \mathrm{mmol}$), N-ethylmaleimide ($900 \mathrm{mg}, 7.2$ $\mathrm{mmol})$ and paraformaldehyde $(1.35 \mathrm{~g}, 15 \mathrm{mmol})$ were heated in refluxing toluene ($40 \mathrm{~cm}^{3}$) with azeotropic removal of water. After 4 h , the solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 95: 5$) to give compound 3 ($666 \mathrm{mg}, 61 \%$) as a pale yellow powder, mp $56-58^{\circ} \mathrm{C}$ (Found: C, $59.1 ; \mathrm{H}, 7.5 ; \mathrm{N}, 15.1$. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 7.7 ; \mathrm{N}, 15.4 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$3020, 2793, 1775, 1692, 1477, 1445, 1407, 1380, 1349, 1305, 1216, 1125 and 1048; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.26-2.34(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 8-\mathrm{H})$, 3.13-3.19 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 5-\mathrm{H}), 3.27\left(2 \mathrm{H}, \mathrm{d}, J 10,6-\mathrm{and} 8-\mathrm{H}^{\prime}\right)$ and $3.55\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.68$ $\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 33.65\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 40.56\left(\mathrm{NCH}_{3}\right), 44.63(\mathrm{C}-1, \mathrm{C}-5)$, 58.24 (C-6, C-8) and 178.80 (2 CO).

\boldsymbol{N}-(1-Ethyl-2,5-dioxopyrrolidin-3-yl)- \mathbf{N}-methylglycine 4

N-Ethylmaleimide ($125 \mathrm{mg}, 1 \mathrm{mmol}$) and sarcosine (178 mg , 2 mmol) were heated in water ($5 \mathrm{~cm}^{3}$) at $40^{\circ} \mathrm{C}$ for 10 h . Evaporation of the mixture and flash chromatography of the residue (propanol-water, $7: 3$) gave compound $4(133 \mathrm{mg}, 62 \%$) as a pale yellow oil. Although it was not possible to obtain a satisfactory elemental analysis for this amino acid, proof for its structure was given by unambiguous transformation (diazomethane esterification) to the fully characterized ester 12. Data for 4 : $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2982,1775,1700,1616,1444,1403,1349,1226$, 1131 and $1049 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.10\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.85(1 \mathrm{H}, \mathrm{dd}, J 5$ and $18,4-\mathrm{H}), 2.96(1 \mathrm{H}$, dd, $J 8$ and $\left.18,4-\mathrm{H}^{\prime}\right)$, $3.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.54(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $4.30(1 \mathrm{H}, \mathrm{dd}, J 5$ and $8,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $12.98\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 29.07(\mathrm{C}-4), 33.62\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 37.54\left(\mathrm{NCH}_{3}\right)$, $58.40\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 61.56(\mathrm{C}-3), 174.92,175.74$ and 177.84 (CO).

Reactions starting from sarcosine, \boldsymbol{N}-ethylmaleimide and phenylglyoxal
 These reaction mixtures were stirred and heated in a closed

 vessel (see Table 2). After cooling to room temperature, each mixture was extracted with dichloromethane ($4 \times 5 \mathrm{~cm}^{3}$) and the combined extracts were washed with water ($5 \mathrm{~cm}^{3}$) and concentrated under reduced pressure. Flash chromatography of the residue (hexane-ethyl acetate, 8:2 to 100% ethyl acetate) gave the pyrrolidines 6 and 7 and the oxazolidine 8 .($1 R^{*}, 5 S^{*}, 6 R^{*}$)-6-Benzoyl-3-ethyl-7-methyl-3,7-diazabicyclo-[3.3.0]octane-2,4-dione 6. Pale yellow powder, $\mathrm{mp} 84-85^{\circ} \mathrm{C}$ (from ether-hexane) (Found: C, 67.1; H, 6.6; N, 9.5. $\mathrm{C}_{16} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.1 ; \mathrm{H}, 6.3 ; \mathrm{N}, 9.8 \%$); $v_{\text {max }}$ (powder with $\mathrm{KBr}) / \mathrm{cm}^{-1} 3000,2963,2939,2872,1768,1685,1596,1572$, 1481, 1451, 1406, 1349, 1314, 1227, 1140, 1061 and $1021 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.20\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $3.23(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 3.32-3.40(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.46(1 \mathrm{H}, \mathrm{dd}, J$ 8 and $10,1-\mathrm{H}), 3.61\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.97(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, $7.50-7.66$ and $8.10-8.16(5 \mathrm{H}, 2 \mathrm{~m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $12.93\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 34.26\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 37.28\left(\mathrm{NCH}_{3}\right), 45.01(\mathrm{C}-1)$, 48.97 (C-5), 55.56 (C-8), 67.44 (C-6), 128.56, 128.95, 133.83, $135.45(\mathrm{Ph}), 178.19,179.01(\mathrm{CO})$ and $198.62(\mathrm{PhCO})$.
$\left(1 R^{*}, 5 S^{*}, 6 S^{*}\right)$-6-Benzoyl-3-ethyl-7-methyl-3,7-diazabicyclo[3.3.0] octane-2,4-dione 7. Pale yellow powder, $\mathrm{mp} \mathrm{112-114}^{\circ} \mathrm{C}$ (from ether-hexane) (Found: C, 67.1; H, 6.4; N, 9.8. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.1 ; \mathrm{H}, 6.3 ; \mathrm{N}, \quad 9.8 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3021,1700,1490,1445,1406,1353$ and $1215 ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.62\left(1 \mathrm{H}, \mathrm{dd}, J 8\right.$ and $\left.10,8-\mathrm{H}^{\prime}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 1$ and 8 , $1-\mathrm{H}), 3.49\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 1$ and $10,8-$ H), $3.70(1 \mathrm{H}, \mathrm{t}, J 8,5-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 7.43-7.68$ and $7.99-8.15(5 \mathrm{H}, 2 \mathrm{~m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.87\left(\mathrm{CH}_{3}, \mathrm{Et}\right)$, $34.26\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 40.21\left(\mathrm{NCH}_{3}\right), 43.65(\mathrm{C}-1), 48.96(\mathrm{C}-5), 58.08$ (C-8), 72.44 (C-6), 128.00, 128.75, 133.40, 136.97 (Ph), 175.31, 177.67 and 195.15 (3 CO).
($4 \boldsymbol{R}^{*}, 5 R^{*}$)-4,5-Dibenzoyl-3-methyloxazolidine 8. Pale yellow powder, $\mathrm{mp} 78-79^{\circ} \mathrm{C}$ (ether-hexane) (Found: C. 73.0; H, 6.0; $\mathrm{N}, 4.8 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.7 \%$); $v_{\max }$ (powder with KBr$) / \mathrm{cm}^{-1} 2976$, 2956, 2927, 2887, 2871, 1681, 1596, 1581, 1450, 1331, 1292, 1241, 1199, 1139, 1061 and $1000 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J$ $6,5-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{d}, J 6,4-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}, J 4,2-\mathrm{H}), 5.72(1 \mathrm{H}$,
d, $\left.J 4,2^{\prime}-\mathrm{H}\right), 7.42-7.55$ and $8.03-8.12(10 \mathrm{H}, 2 \mathrm{~m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}(62$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 42.73\left(\mathrm{NCH}_{3}\right), 70.90(\mathrm{C}-5), 77.42(\mathrm{C}-4), 89.40$ (C-2), 128.65, 128.71, 128.98, 129.36, 133.66, 133.78, 134.89, 135.35 (2 Ph), 195.43 and 196.93 (2 CO, PhCO).

Reactions starting from methyl sarcosinate hydrochloride and formaldehyde

These reactions, performed in a closed vessel, employed in addition to solvent ($4 \mathrm{~cm}^{3}$) equimolar quantities of triethylamine and hydrochloride. Commercial aqueous formaldehyde was diluted with distilled water to reach the desired concentration. The dipolarophile (N-ethylmaleimide or diethyl fumarate or maleate) was added to the mixture which was then heated and stirred (see Tables 3 and 4). After being cooled to room temperature, the mixture was diluted with water ($5 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(4 \times 5 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with water $\left(5 \mathrm{~cm}^{3}\right)$ and then concentrated under reduced pressure. Flash chromatography of the residue $(9: 1$ hexane-ethyl acetate to 100% ethyl acetate) gave the pyrrolidines $10,11,15,16$ and 19, the Michael adducts 12 and 17 and the oxazolidine 13. The last three compounds were more successfully prepared using only the two appropriate reactants and omitting the unnecessary third.
Methyl ($1 S^{*}, 5 R^{*}, 6 S^{*}$)-3-ethyl-7-methyl-2,4-dioxo-3,7-diazabicyclo[3.3.0] octane-6-carboxylate 10. Syrup (Found: C, 54.8; $\mathrm{H}, 6.5 ; \mathrm{N}, 11.5 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $55.0 ; \mathrm{H}, 6.7$; N , 11.7%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3020,1775,1708,1444,1403,1352$, 1229,1176 and $1140 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.10-3.18,3.30-3.38(4 \mathrm{H}, 2 \mathrm{~m}$, 1-, $5-$ and $8-\mathrm{H}), 3.56\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $3.91(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.14$ $\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 33.31\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 36.12\left(\mathrm{NCH}_{3}\right), 43.89(\mathrm{C}-1), 48.20$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 50.84(\mathrm{C}-5), 54.53(\mathrm{C}-8), 66.45(\mathrm{C}-6), 169.92$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 176.95$ and $178.02(2 \mathrm{CO})$.
Methyl ($1 S^{*}, 5 R^{*}, 6 R^{*}$)-3-ethyl-7-methyl-2,4-dioxo-3,7-diazabicyclo[3.3.0] octane-6-carboxylate 11. Powder, $\mathrm{mp} 120^{\circ} \mathrm{C}$ (Found: C, 55.2; H, 6.6; N, 11.6. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 55.0; $\mathrm{H}, 6.7 ; \mathrm{N}, 11.7 \%$); $v_{\max }$ (powder with KBr$) / \mathrm{cm}^{-1} 2978,2952$, 2836, 1790, 1761, 1690, 1445, 1405, 1371, 1348, 1226, 1198, 1127 and 1057; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.34$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), 2.53($1 \mathrm{H}, \mathrm{dd}, J 8$ and $\left.9.5,8-\mathrm{H}\right), 3.17(1 \mathrm{H}, \mathrm{d}, J 8$, $6-\mathrm{H}), 3.20(1 \mathrm{H}, \mathrm{dt}, J 1$ and $8,1-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 1$ and $9.5,8$ $\left.\mathrm{H}^{\prime}\right), 3.50(1 \mathrm{H}, \mathrm{t}, J 8,5-\mathrm{H}), 3.56\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and 3.82 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.84\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 34.24$ $\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 39.93\left(\mathrm{NCH}_{3}\right), 43.34(\mathrm{C}-1), 47.64(\mathrm{C}-5), 52.20$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 57.72(\mathrm{C}-8), 69.72(\mathrm{C}-6), 169.44\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 175.70$ and 177.67 (2 CO).

N -(N -Ethyl-2,5-dioxopyrrolidin-3-yl)- N -methylglycine methyl ester 12. Syrup (Found: C, 52.9; H, 6.9; N, 12.1. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $52.6 ; \mathrm{H}, 7.1 ; \mathrm{N}, 12.3 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3020,1775$, $1741,1703,1444,1403,1379,1215$ and $1129 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.17\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.69(1$ H , dd, $J 5$ and $18,4-\mathrm{H}), 2.94\left(1 \mathrm{H}, \mathrm{dd}, J 8\right.$ and $\left.18,4-\mathrm{H}^{\prime}\right), 3.56$ and 3.69 (1 H each, $2 \mathrm{~d}, J 17, \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.57\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $3.98(1 \mathrm{H}, \mathrm{dd}, J 5$ and $8,3-\mathrm{H})$; $\delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.05\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 32.91(\mathrm{C}-4), 33.52\left(\mathrm{CH}_{2}, \mathrm{Et}\right)$, $37.80\left(\mathrm{NCH}_{3}\right), 51.77\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 56.35\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 61.14(\mathrm{C}-3)$, $170.94\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 174.61$ and $176.21(2 \mathrm{CO})$.
3,4-Diethyl 2-Methyl ($2 R^{*}, 3 S^{*}, 4 S^{*}$) and ($2 S^{*}, 3 S^{*}, 4 S^{*}$)-1-methylpyrrolidine-2,3,4-tricarboxylate 15, 16. Syrup (Found: C, 54.1; H, 7.3; N, 5.0. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires C, 54.3; H, 7.4; N, 4.9%); $v_{\text {max }}$ (neat)/cm ${ }^{1} 3020,1730,1660,1630,1590,1530,1490$, 1445, 1422, 1370, 1215 and $1020 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26$ and $1.27\left(3 \mathrm{H}, 2 \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.39$ and $2.40\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NCH}_{3}\right)$, $2.70-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.38(\mathrm{~m}, 1.6 \mathrm{H}), 3.43(0.7 \mathrm{H}, \mathrm{dd}, J 10$ and 3), $3.62(0.7 \mathrm{H}, \mathrm{q}, J 8), 3.68-3.79(1 \mathrm{H}, \mathrm{m}), 3.72$ and 3.78 (3 $\mathrm{H}, 2 \mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) and 4.10-4.25(4 H, m, CH2 $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(62 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 14.07\left(\mathrm{CH}_{3} . \mathrm{Et}\right), 39.65$ and $40.38\left(\mathrm{NCH}_{3}\right), 44.84$ and
$45.16(\mathrm{C}-4), 49.25$ and $50.08(\mathrm{C}-3), 51.66$ and $52.24\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 57.28 and $57.97(\mathrm{C}-5), 60.35,61.18,61.36,61.41\left(\mathrm{CH}_{2}, \mathrm{Et}\right)$, 68.64 and 70.27 (C-2), 170.80, 171.11, 171.61, 172.15, 172.31 and 173.00 (CO).
\boldsymbol{N}-(1,2-Diethoxycarbonylethyl)- \boldsymbol{N}-methylglycine methyl ester 17. Syrup (Found: C, 52.4; H, 7.4; N, 5.0. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires C, 52.3; H, 7.7; N, 5.1\%); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3020,2980,1730$, $1640,1490,1440,1420,1290,1220,1180$ and $1020 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 130\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.65(1 \mathrm{H}, \mathrm{dd}, J 6$ and $16,2-\mathrm{H}), 2.87(1 \mathrm{H}$, dd, $J 9$ and 16, $2-\mathrm{H}^{\prime}$), $3.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J 6$ and $9,1-\mathrm{H})$ and $4.06-4.31(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.99$ and $14.24\left(\mathrm{CH}_{3}, \mathrm{Et}\right)$, $35.08 \quad(\mathrm{C}-2), \quad 38.99 \quad\left(\mathrm{NCH}_{3}\right), \quad 51.60 \quad\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), \quad 55.82$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 60.57$ and $60.65\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 62.26(\mathrm{C}-1), 170.75$, 170.88 and 171.17 (3 CO).

3,4-Diethyl 2-Methyl ($\mathbf{S S}^{*}, \mathbf{3 R}{ }^{*}, \mathbf{4} \mathrm{~S}^{*}$) 1-methylpyrrolidine-2,3,4-tricarboxylate 19. Syrup (Found: C, 54.6; H, 7.1; N, 5.1. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires C, $54.3 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.9 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3022,2987,1738,1439,1376,1215,1023$ and $927 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.25\left(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.80-$ $2.88(1 \mathrm{H}, \mathrm{m}), 3.35-3.54(4 \mathrm{H}, \mathrm{m}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and 4.07-4.20 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.00$ and $14.03\left(\mathrm{CH}_{3}, \mathrm{Et}\right), 41.01\left(\mathrm{NCH}_{3}\right), 44.95(\mathrm{C}-4), 49.82(\mathrm{C}-3), 52.35$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 57.95(\mathrm{C}-5), 60.90$ and $61.13\left(\mathrm{CH}_{2}, \mathrm{Et}\right), 69.64(\mathrm{C}-2)$, $171.35\left(\mathrm{CO}_{2} \mathrm{Me}\right), 171.60$ and $172.17(2 \mathrm{CO})$.

Acknowledgements

We thank C.N.R.S. and Université Paris-Sud for financial support.

References

1 A. Lubineau, J. Augé and Y. Queneau, Synthesis, 1994, 741.
2 A. Lubineau, J. Augé, E. Grand and N. Lubin, Tetrahedron, 1994, 50, 10265.
3 S. D. Larsen and P. A. Grieco, J. Am. Chem. Soc., 1985, 107, 1768; P. A. Grieco and S. D. Larsen, J. Org. Chem., 1986, 51, 3553; H. Waldmann, Angew. Chem., Int. Ed. Engl., 1988, 27, 274; H. Waldmann and M. Braun, Liebigs Ann. Chem., 1991, 1045.

4 A. Padwa, Intermolecular 1,3-dipolar cycloadditions in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, pp. 1069-1109; P. A. Wade, Intramolecular 1,3-dipolar cycloadditions, pp. 1111-1168.
5 (a) R. Grigg, J. Idle, P. McMeekin, S. Surendrakumar and D. Vipond, J. Chem. Soc., Perkin Trans. I, 1988, 2703; (b) O. Tsuge, S. Kanemasa, M. Ohe and S. Takenaka, Bull. Chem. Soc. Jpn., 1987, 60, 4079.
6 (a) R. Grigg and J. Kemp, Tetrahedron Lett., 1980, 21, 2461 ; (b) O. Tsuge, S. Kanemasa, M. Ohe, K. Yorozu, S. Takenaka and K. Ueno, Bull. Chem. Soc. Jpn., 1987, 60, 4067.
7 P. N. Confalone and E. M. Huie, J. Am. Chem. Soc., 1984, 106, 7175.
8 R. Grigg and H. Q. N. Guranatne, J. Chem. Soc., Chem. Commun., 1982, 384.
9 (a) R. Grigg, S. Surendrakumar, S. Thianpatanagul and D. Vipond, J. Chem. Soc., Perkin Trans. 1, 1988, 2693; (b) T. Coulter, R. Grigg, J. F. Malone and V. Sridharan, Tetrahedron Lett., 1991, 32, 5417; (c) R. Grigg and S. Thianpatanagul, J. Chem. Soc., Chem. Commun., 1984, 180.
10 (a) R. Grigg and H. Q. N. Guranatne, Tetrahedron Lett., 1983, 24, 4457; (b) M. F. Aly, M. I. Younes and S. A. M. Metwally, Tetrahedron, 1994, 50, 3159
11 (a) R. Grigg M. F. Aly, V. Sridharan and S. Thianpatanagul, J. Chem. Soc., Chem. Commun., 1984, 182; (b) R. Grigg, T. Mongkolaussavaratana, C. A. Pounds and S. Sivagnanam, Tetrahedron Lett., 1990, 31, 7215.
12 (a) H. Ardill, R. Grigg, V. Sridharan, S. Surendrakamar, S. Thianpatanagul and S. Kanajun, J. Chem. Soc., Chem. Commun, 1986, 602; (b) R. Grigg, H. Q. N. Gunaratne and J. Kemp, Tetrahedron, 1990, 46, 6467; Q. Ahmed, T. Wagner-Jauregg. E. Pretsch and J. Seibl, Helv. Chim. Acta, 1973, 56, 1646.

13 A. Lubineau and J. Augé, Tetrahedron Lett, 1992, 33, 8073.

14 M. F. Aly, H. Ardill, R. Grigg, S. Leong-Ling, S. Rajviroongit and S. Surendrakamar, Tetrahedron Lett., 1987, 28, 6077.

15 (a) R. Grigg, J. Idle, P. McMeekin and D. Vipond, J. Chem. Soc., Chem. Commun., 1987, 49; (b) H. Ardill, X. L. R. Fontaine, R. Grigg, D. Henderson, J. Montgomery, V. Sridharan and S. Surendrakamar, Tetrahedron, 1990, 46, 6449; (c) F. Orsini, F. Pelizzoni, M. Forte, R. Destro and P. Gariboldi, Tetrahedron, 1988, 44, 519.
16 S. Kobayashi and I. Hachiya, J. Org. Chem., 1994, 59, 3590.
17 (a) R. Grigg, J. Kemp and W. J. Warnock, J. Chem. Soc., Perkin

Trans. 1, 1987, 2275; (b) M. Joucla and J. Hamelin, Tetrahedron Lett., 1978, 19, 2885; (c) M. Joucla and J. Mortier, Bull. Soc. Chim. Fr., 1988, 125, 579; (d) E. Vedejs and J. W. Grissom, J. Am. Chem. Soc., 1988, 110, 3238; (e) S. Kanemasa, K. Sakamoto and O. Tsuge, Bull. Chem. Soc. Jpn., 1989, 62, 1960; (f) P. Loftus and J. J. Wong, J. Heterocycl. Chem., 1983, 20, 321.

Paper 5/02508G
Received 19th April 1995
Accepted 21st June 1995

[^0]: \dagger Present address: Laboratoire de Sucrochimie (CNRS, UMR 143), c/o Eridania Béghin-Say, C.E.I., B.P. 2132, 69603 Villeurbanne Cedex, France.

[^1]: \ddagger Data for 13: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3022,2959,2886,2814,1743,1457,1438$, $1359,1285,1214,1052$ and $1016 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.53(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, J 6$ and $8,5-\mathrm{H}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.87(1 \mathrm{H}$, dd, $J 6$ and $8,4-\mathrm{H}), 4.18(1 \mathrm{H}$, dd, $J 8,4-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{d}, J 5,2-\mathrm{H})$ and $4.46(1 \mathrm{H}, \mathrm{d}, J 5,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 41.65(\mathrm{NMe}), 52.32$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 66.48(\mathrm{C}-5), 67.23(\mathrm{C}-4), 88.66(\mathrm{C}-2)$ and $172.06(\mathrm{CO}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$).

